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ABSTRACT 

Let ~ be  a D u b i n s - l ~ ' e c d m a n  r a n d o m  h o n m o m o r p h i s m  on [0, 1] derived 

fl'om the  base  measu re  un i form on {x = i}2 , and  let f be  a periodic 

func t ion  sat isfying I f (5)  - f (0 ) i  = o(log loglog ½) -a .  T h e n  the  Four ier  

expans ion  of f o ~ converges at 0 w i th  p robabi l i ty  1. In the  condi t ion  on  

f ,  o canno t  be  replaced by  O. Also we deduce  some  0-1 laws for th is  kind 

of probleln.  

1.  I n t r o d u c t i o n  

This paper is a continuation of an earlier paper, [KO98], where a mlinber of 

questions related to the Fourier expansions of f o ~2 were discussed, most no- 

tably conditions under which S. ( f  o 4) converges uniformly for a set of ~'s with 

probability 1, where S .  stands for the nth Fourier sum. It was proved that if 

w~(f) = o( loglog ~) - '  

then S,~(f o 4) converges unitbnnly almost surely, where w,~(f) stands as usual 

for the modulus of continuity of f ,  i.e. 

w a ( f ) : =  sup I / (x ) - f (y ) l ,  
I.~--yl_<~ 

and that this result is sharp (Theorems 4 and 6 ibid). 
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In sections 3 and 4 we address the question of convergence at a specific point. 

The most obvious formulation might be "under what conditions does S,~ ( f  o 4)(x) 

converge?" However, in this fornmlation it is impossible to get local conditions 

on f since ~ smooths out all the points. A better formulation uses conditional 

probability, and reads "under what local conditions on f near y do we have that 

S,~(f o ~2)(:r)l~(x ) = y 

converges?" Essentially, the answer would be the same, i.e. a triple log condition, 

but this fornmlation incurs a number of technical problems, so we simplify the 

proof making use of the fact that 4(0) = 0. Thus we reached the formulation of 

the result in the abstract, i.e. 

THEOREM 1: Suppose f is a continuous function on the circle satisfying 

I f ( ~ ) - f ( O ) ] = o ( l o g l o g l o g ~ )  -1. 

Then the Fourier expansion of f o ~ converges at 0 with probability 1. 

and this condition is sharp in the following sense: 

THEOREM 2: There oxists a conthmous function f satisfying 

[f(~) - f(O)l = O(logloglog ~) -1 

for which the Fom'ier expansion of f o ~ diverges at 0 with probability 1. 

Actually, f may be constructed to satisfy this condition globally, i.e., ~y((~) = 

O (log log log ½)- 1. 

It is instructive to contrast these results with the non-stochastic case. The re- 

sults of [KO98] are analogues of the Dini Lipschitz test [Z59, 2.71] which gives a 

sufficient sharp condition for uniform convergence of S,~ (f) ,  wf ((~) = o(log ~)-1; 

for convergence at a point we have the Dini test [Z59, 2.4] which gives a sufficient 

condition f ~coy((~; x) < oc (again, sharp) where wI(5; x ) i s  the modulus of con- 

tinuity of f at the point x. Thus in the classical case the condition for pointwise 

convergence is slightly s t ronge r ,  or in other words, a global estimate of a~y gives 

better information about convergence at a specific point than an estilnate only 

at that point. This behavior, as remarked, does not happen in our probabilistic 

settings. Of course, we also get a lnuch wider gap, an additional log factor. We 

also wish to reiterate remark 4.4i from [KO98]: there exist flmctions f satisfying 

wy(5) = O(loglog ½)-1 such that the Fourier expansion of f o ~ diverges at a 
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(random) point. This result has no non-probabilistic equivalent. For a discus- 

sion of properties of S.  ( f  o ~2) where ~2 is non-probabilistic, e.g. problems such 

as when S . ( f  o 4) might satisfy certain properties for some p, all ~2 or a second 

category set of p see [K83], [O81] or [O85]. 

Of course, the discussion above does not make much sense without specifying 

the probabilistic model for picking 4, and the group of homeomorphisms has no 

Haar measure. We shall be using a model suggested by Dubins and Freedman 

[DF65] which uses a base measure v oll [0, 1] 2. Roughly, a point (x, y) on t, he 

graph of ~ is chosen at random using p, then this process is repeated for the 

rectangles extending from (0, 0) to (x, y) and from (.v, y) to (1, 1) with rescaled 

versions of u. Repeating this over and over we get a sequence of points which can, 

with probability 1, be closed to a graph of a homeomorphism [0, 1] --+ [0, 1] with 

c2(0) = 0 and 4(1) = 1. A proper, though restricted, definition is provided in 

section 2.2. It must be noted, though, that  Dubins and Freedman were not inter- 

ested in homeomorphisms but in measures, and considered the Lebesgue Stieltjes 

measures d~ as random probability measures on [0, 1] and studied conditions un- 

der which a typical dp might be singular, atomic and so on. 

Not all Dubins Freedman measures are born equal, and the most natural  ones 

are the ones with base measure unifornl o n  {3: ~ -  1}, {y = 1} and on [0, 1] 2. See 

e.g. [GMW86] for a specific discussion of these three measures - -  they studied the 

properties of the set ¢(x) = x and other interesting facts about a typical 4. This 

paper will be using the first one. Of course, measures centered on a vertical line 

are easier to analyse because one can have an explicit formula for the distributions 

of p(x) for dyadic :r, and sometimes for other x 's  too; for example, in the uniform 

case, p(~)  has the density function 1 - x [KO98, Lemma 1.6]. What  nfight be 

less clear is that  I really need the distribution to be uniform. Indeed, generalizing 

the results of [KO981 for measures on {x : ½} which are non-uniform is an open 

problem. Such a result could be interesting, for example, in order to play around 

with the ahnost-sure HSlder constant of ~2. 

In the last section we discuss the 0-1 law. It  turns out that  for this kind 

of problems, the 0-1 law is not self-evident. We shall reduce the problem to 

a functional-integral equation (15) which can be solved by elementary manipu- 

lations. This general technique allows one to get. 0-1 laws for many problems 

related to S ,  ( f  o ~): mfiform convergence, poimwise convergence, boundedness 

of partial  sums etc. 

I wish to end this introduction with a question I wasn' t  even able to formu- 

late properly. If I C [0, 1] is a dyadic interval then the conditional restricted 
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homeomorphism ¢ := ~]r]~9(0I) is similar to the original ~2 - -  this is the "scaling 

invariance", see (1) below. If, however, [ is not dyadic then this is no longer 

true, but ~ still seems to be very similar to ~9. Many of the results of this paper 

and of [KO98] can be reproved for ga. It could be very interesting (and useful) to 

prove that for "infinitesimal" problems, g~ and ~9 are equivalent. 

2. P r e l i m i n a r i e s  

2.1 NOTATIONS. We denote by T the circle group, which we identify with the 

interval [0, 1]; m denotes the Lebesgue measure on [0, 1]; C and c denote absolute 

positive constants, possibly different, with C usually pertaining to constants large 

enough and c to constants small enough. For a continuous function f ,  I lfll denotes 

its supremum and supp f its support. 

P denotes the probability of some event (with the measure on the random 

homeomorphisms defined in the next section); E denotes the expectation of a 

variable, and V its variance. The notation X ,-~ Y for two variables means "X 

and Y have the same distribution". 

Dyadic rationals are numbers of the type k2 -n,  k and n integers, and dyadic 

intervals are intervals of the type [k2- ' ,  (k + 1)2-'~]. For an interval I := [a, b] 

the boundary OI is the set {a, b}; ~xJ denotes the largest integer < x and Ix] 

the smallest integer > x. 

Dn denotes the Dirichlet kernel on [0, 1], i.e., sin((2n + 1)rrx)/sin(rrx),  so 

/o' S, , ( f ;  x) = D, , (x  - t ) .  f ( t )d t .  

The pointwise modulus of continuity of f at x is defined by 

/ f-\ 
If(x+.) ~ f ( x ) ~ ~ : =  s u p  

O<l.l<a 

where for 5 = 0 we define c0/(x; 6) assuming the flmction to be periodic. 

2.2 RANDOM HOMEOMORPHISMS. Let's start with the following definition of 

the particular Dubins Freedman measure we will be using, which will be easy to 

work with. Let X~,k be independent uniform variables in [0, 1] for any n E N and 

any odd 0 < k < 2 n. We define an increasing function ~o on the dyadic rational 

using the following procedure: Start by taking ~2(0) = 0, ~2(1) = 1, and 

(/ .9(1) = X l , 1 .  
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On the second step, defne 

p(¼) = F ( t ) '  X2,,, ~(3)  = p(})  + (1 - F(½)) " X2,3, 

i.e. c2(¼) and ~9(a ) are distributed mfiformly on [0, qo(½ )] and [~(½), 1] respectively, 

and are otherwise independent. We continue this process, at the nth  step taking 

~ ( k 2  - n )  :=- 9.9((k - 1)2 - n )  -+- Z n ,  k • ( ~ ( ( k  Jr 1)2 - n )  - ~2((k - 1)2--n).  

This defines p on all dyadic fractions. With probability 1, p can be extended to 

a homeomorphism of [0, 1] [DF65, Theorem 4.1]. We denote this measure by P, 

and by ~2 the random change of variable. 

The most useflfl property of ~ is "scaling invariance", which roughly says that 

for any dyadic interval I, ~21I behaves like a small copy of ¢2. To be nmre precise, 

LEMMA 1: I f I =  [k2 -n, (k + 1)2-'q is a dyadic interval, then 

(1) (~ol~o(OI) = {a,b})li ,-, (>o o L) .  ( b -  a) + a  

where L is a linear increasing map of I onto [0, 1]. 

The proof may be found in [GMW86], Theorem 4.6. 

Finally, we need the following simple calculation, which can be found in [KO98] 

in Lemma 1.4 and the remark that follows. For some constants/(1 and Ku we 
have 

(2) < < } > 1 - c ,  

for any r > 0. It will be convenient to assume K2 < 1 < K1. 

2.3 AND FOURIER EXPANSIONS. We need the following lemmas, which are 

deeply related to (though unfortunately not direct consequences of) Theorem 2 
from [KO98}: 

LEMMA 2: For ally eon t imlous  f ,  n ,  r > 2/n and I f  > O, 

C lo7;;1, ) 

LEMMA 3: For any continuous f ,  n, interval I and K > O, 

> I ( , , f , , )  < Ce 
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LEMMA 4: For some co~lstant /3, the same  c as above, and a~y constant I( ,  

( f  o ~ ) .  D,~ > 2Iiwf(O;Cr ~) < Cr 2+ - . 
r 

In other  words, if Theorem 2 of [KO98] gave an es t imate  of f~ ( f  o ~2). D,, then  

these l emmas  give split es t imates  for the head and the tail. The  proof  of  L e m m a  

4 is an easy corollary to L e m m a  3, so let 's  s ta r t  with it: 

Proo~ Clearly, we may  assume r = 2 -~'. For each of the segments  I - r ,  0] and 

[0, r], we use (2) (/3 - I(2),  apply  the scaling invariance of iP and finally use 

L e m m a  3 for a scaled version of f .  II 

As for the proofs of Lemmas  2 and 3, they follow quite closely the proof  of the 

aforenlentioned Theorem 2, so the rest of this section must  be read parallel  to 

it. For L e m m a  2, s ta r t  fronl page 1029 ibid. There  I[fll = 1 (which we can also 

assume here, of course), Ik denotes an are of T symmet r i c  around 0 containing 

2k - 1 peaks  of the Diriehlet kernel D,~ and ~}~ := f l  c, D,~. ( f  o ~): Ik and ~ are 

connected by the inequality 

E(] i?  I ~lIk) < c t ° g 2 k  

which is L e m m a  2.6 ibid. We define 

j :---- L nr,.J 

with C chosen to satisfy 

Wi th  this t I we get 

LEMMA 5: 

and II := C l ° g j  

thell 

1 
Vs>_j. 

I£ for a given e > 0 and u > 1, tile inequality 

IP(I]~ I > up, I ~1I~) < e Vs >_ j ,  

The proof  is word-for-word identical to the proof  of L e m m a  2.8 ibid. Now, 

s ta r t ing  f rom the definition of It we apply  L e m m a  5 inductively I t imes and get 

tha t  
[ 4 \ 2 ' - 1 / 1 " ~  2t 1 2~ 

P(l ;l >.d,I < 5 j -  < ( 5 )  



Vol. 139, 2004 RANDOM HOMEOMORPHISMS AND FOURIER EXPANSIONS 195 

where the d~'s are defined recursively by dl = 1, dt = 2dl-1 +2. Clearly dt < C2 t. 

Picking a maximal 1 such that p.dl < K we get that 21 > cK/p, and Lemma 2 

follows. | 

The proof of Lemma 3 is even more similar to that of Theorem 2 fi'om [KO98], 

and we shall onfit it. 

3. P o i n t w i s e  c o n v e r g e n c e  

Proof of Theorem I: Throughout the proof we shall assume that f E C(T) is 

some fixed function, that Ilfll -< 1 and that f(0) = 0. We fix n sufficiently large 

for the rest of the proof. Define r = (log 5 n)/n.  Lemma 2 will ensure that 

( f l - , -  1 ) ( logLSn'~ C 
(3) • ( f o 4 ) . D ,  > ~ < C e x p  - c  ) < - -  

- log log n n 3" 

Let us now assume that some 11~, 1 and m2 satisfy lnl - ln2 < n / log  6 n. A simple 

calculation will show 

12 cos(0n, + me +sin(rrx)l)nx) sin((m, - m2)Trx) < C nlog 6 n Dm~ 

SO 

"[" ID.,, - Din., I < C~ log .n 
J -  r 

which, combined with (3), gives 

(4) P ( f  o 4)" ( D . ~  - D. ,  2 > < - -  
113 " 

Thus, if we only calculate the behavior of f ( f  o 4)" D,,  on a sequence of ln's from 
77 to 2n with jumps [n/log 6 n J, we will get. a uniform estinaate for all 771 E In, 2n]. 

Now is the time to use the log-log-log assumption on f .  Let e(n) --+ 0 be some 
sequence converging to 0 sufficiently slow as to satisfy 

(1 0; n i~,)- = e ~) wy ( o(log log log n ) -  1. 

Remembering Lemma 4 (from which we also take the/3 above), this gives 

(/; ) (Y o 4 )  > < C r 2 + Ce  - < C~ log s n 
'F 

(ft, as usual, denoting the opposite of o). We use this inequality on a sequence 

of m's which has a length < C log 6 n and throw in (3) and (4) to get 

( L 1 Dm C ) C "q-rt C ' P 3 m • [ n , 2 n ] ,  ( f o ~ ) .  > e ( n ) + ~  < log 2 n -  
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and summing these probabilities for n = 2 k we get the desired result: that  these 

events happen only for a finite number of n 's  for ahnost every ~2. | 

Remarks: 1. Actually, we never used the continuity of f .  The theorem holds 

for any L ~ function satisfying 

and 

[ f (1-5)- f (1- ) l=o( logloglog~)  -1 

(for an explanation why Sn(f o 4) is even well defined for non-continuous f ,  see 

[KO98, Lemma 1.3]). If  f (0  +) ~ f ( 1 - ) ,  we can simply take f - g where g is an 

appropriate linear function; h := g o ~ will be a monotone function, for which we 

always have that  the Fourier expansion at x converges to ½(h+(x) + h-(x)). 
2. A similar proof shows that  for any continuous function f ,  

Sn( f  o 4; O) = o(log log log n), 

and for any f C L ~ ,  

Sn(f o ~; O) = O(log log log n). 

These results, too, are sharp. 

4. Sharpness 

This section will be devoted to the proof of Theorem 2. Ideologically, the essen- 

tials of the proof are contained in the following heuristics. Examine the following 

function: 

= ~sin2~r(tn~:+~pk), t E [n-k,n-k+~],  1 < k < e ' ? ,  
L~(t) n 4 

O, t < ~ - ¢  . 

with some phases ¢'k E [0, 1] (usually chosen to make f~, continuous). On each 

interval 4 -1 ([n -k,  n-k+1]), f o ~  has n -  1 peaks, and with some small probability 

they will be "aligned" with tile peaks of some Dirichlet kernel D~. The probability 

to get a good aligmnent of n - 1 peaks is approximately c - c ~ ,  and the variables 
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are "approximately independent" so one would expect that in > e Cn such vari- 

ables, with big probability this alignment will happen at least once. In this case, 

we will have 

L (fov).D,,~cflD,,[ > clogn. 
-~([,-k,,~- ~+q) 

So 

(ii) 

(iii) 

(iv) 

sup f l ( f  o 4) " Dr > c logn > clogloglogn ~"4. 
IC[0,1], rEN J I 

To make these calculations into a proper proof, we need to do the following: 

(i) Explain what it means to "get a good alignment of f o ~ with Dr" and 

calculate the probability. The calculation will not give e - c a  but a rather 

weaker estimate hence the element n 4 in the definition of f , .  

Explain how to overcome the problem that these "approximately indepen- 

dent" variables are not properly independent. 

Explain why it is enough to get a supremum of f t  for some I C [0, 1] rather 

than of f[0,1]" 
Combine the f , ' s  into a single function f which will satisfy the requirements 

of the theorem. 

We start with issue (iii). 

Let  [If][ ~- 1, K > 1, p and ro < rl be given with the condition 

P{ ~eIo,~Isup f [ o , y ] ( f ° ~ ) ' D "  > 1(} > p; 
rE[ro,rll 

LEMMA 6: 

then { 1} c 
sup ]S , . ( f o4 ;O)]>  ~I(  > p - - - -  

re[ro,rd /(" 

The proof is practically identical to the proof of Lemma 4.5 from [KO98], and 

we shall omit it. The reader might want to skip to the final steps of the proof of 

Theorem 2 to see how this lenmm is used. 

To investigate the independence properties of 4, i.e. to explain issue (ii), let 

us return to the variables X,,,~. defining the measure. For each i > j E N define 

~i,j  to be the a-field spanned by 

(Xn,k: 2-': < k2 -'~ < 2-5}.  

Clearly, j > k imply that f~i,j and f~.,t are independent. 
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LEMMA 7: Let  i > 1 be an integer, 0 < e < 1 and 0 < y < x < 1 - e. Then 

(5) P (p (1 /2 )  E [ x , x + e ] [  ~(2 - i )  = y) > 2 m a x ( ~ , l l o g y l )  

This  is a somewhat  tedious exercise in calculus. Let us work it out.  A 

simple calculat ion (which may  be found in [KO98], (1) page 1022) shows tha t  

the dis tr ibut ion function of ~(2 - i )  is 

(G) (,i 1 .  log'-' y 

which, using the scaling invariance of p, gives the condit ional dis t r ibut ion func- 

t ion 

(i_ 1).lo$~_2(x/y ) 
x . l o g i _ l ( y  ) , X > y, (7) d i s t ( ~ ( 1 / 2 ) = x ]  ~(2 - / ) = y ) =  0, x < y .  

This  dis t r ibut ion (as a f imction of x) is increasing until x0 = ye i-2 and then 

decreasing - -  which clearly implies tha t  the probabi l i ty  (5) as a function of x is 

increasing until some xl  defined by the equali ty 

logi-2(.Vl/y) 1ogi-2( (Xl  + e)/y) 
:F 1 x 1 -~ f 

and then decreasing, so the min imum is achieved at  x = y or, if Xl < 1 - e, 

possibly at  x = 1 - e. At x = y we have 

P(q~(1/2) e [y, y + e]l ~ ( 2 - i )  = Y) = 1°g i -1 (1  + ely)  
log/-1 (y) 

I f  e l y  < 2 we es t imate  log(1 + e ly )  > e /2y  > e/2 and otherwise log(1 + ely)  

> 1 > e/2, so in ei ther ease we get (5). At .v = 1 - e, 

P (~(1 /2 )  e [1 - e, 1]1 = y) > . r a i n  (i - - 1 ) -  ~ ' / y )  
- 1 - ~ < x < l  X "  l o g ' - I  (y) 

and the min imum,  remember ing  xl  < 1 - e, is achieved at  x = 1, so it equals 

i - 1  

t logyl  

and again we get (5). II 

In the following l e m m a  and its proof  the nota t ion  P( ' t  ~ ( 2 - / )  = ~i)  is under- 

s tood  ~s a shor thand  for lim~-,0 P(. I I~(2- i )  - ~il < 5)- 
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LEMMA 8: Let  i C N. let ¢i C [0, e -1] and let r be an increasing Lipsd~itz 

lmnleomorphism [2 -~, 1] --+ [¢i, 1] with a constant  I f ,  i.e. ] r ( . r ) -  r (y )  l < I x ' l x - y l ,  

and let O < e < e -1.  Then 
• ( q(I()£ "~C(lx')ill°ge] 

P(2-,<x<,max [¢(:r) - r(.r)l < e ] ¢(2 -~) = ¢,)  > c'(K) 1/~ \ [ l o g ¢ i l ]  

This l e m m a  is a var ia t ion on L e m m a  4.1 from [KO98], in which only the c(K)1/~ 

factor  appeared.  Th ink  of c(/£) a/e as the "main  te rm" ,  with the other  factor 

meaningfifi  only for "unusual" cases where ¢i is very small  or i is very large. 

Proo£" It  is clearly enough to consider e = (K  + 2) /2  q where q is some integer. 

For any s _< q we denote 

As := {¢: 1¢(j2 -'~) - r ( j2- '~) l  < 2 -q,  V2 ~-~ < j < 2s}. 

Let us est imate P(A~IA~_I, ¢(2 - i )  = ¢i). Denote j* to be the minimal j > 2 s- i .  

If ¢ E A.~-I with some s _< q then, for any odd j ¢ j*, the probabil i ty of the 

event 

I¢(j2 -*) - r ( j2 -~) l  < 2-q 

can be es t imated  fi'om below by 

2-q  2-q  
(8) > 

}¢((j + 1)2 - " )  - ¢ ( ( j  - 1)2-.~)1 - i /2 -~+1  + 2-q +1 

and for different j ' s  these events are independent• This  es t imate  also holds for 

j = j* if s > i, and if s = i, j* is even and therefore irrelevant. Otherwise,  for 

j = j* use L e m m a  7 and the scaling invariance of ¢ to get 

p ( l¢ ( j*2  -.~) - r ( j *2 -8 ) l  < 2 -q l  1¢(2 - / )  = ¢ , )  

(9) > (2max(1,11°~(j*+~',)2 .))I)./ > (211°g¢il 
Sumnfing (8) and (9) (and replacing s with s + 1) we get 

n,(A,+, I ,u, ¢(2-,)=¢,)> (i<2q-~ + 2) -2". (' 2-q-, ~'  
~' I log ¢,-----] J ' 

so 

( 2--q -1 ~'iq q--1 

ll'(Aq I ¢ ( 2 - ' )  = ¢,)  > ~ , l log¢, l /  " I-[(I< + 2)-2"2-(q-') '~" 
s=0 

~=, 
> \ ~ / (  c(/()e ]c'(K)il,og~l • exp( C(K)))_ 
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and 

SO 

( 1) 
~(/3) < 7 ( / 3 ) + e < s o n  -k n - l + n  

(11) g o ~ - sin((2r + 1)Tr.~:)l I < e- maxg / = ?~-399 j • 2Zrsoln k <_ 27rn -1. 

The Dirichlet kernel Dr and sin((2r + 1)Jr:r) are aligned in the sense that 

f l  sin((2r + 1)rrx) • D~ > clogn, 

and with (11), 

x(g o cp) • D~. > clogn 

and the probability is 

• . ( C~t - 3  ~C.K1 logT~.logn 
C n3 

\ if2 log n / 

C log n 
> c log n 

// 

e - C n a - C ( K 1 , K 2 ) l ° g  3 n ~ e - C ( K 1 , K ~ ) n a .  | 

This lemma is the "local" component of the proof of Theorem 2. The complement, 

the "global" component, is to show that for typical ~, many pairs i, j satisfying 

the above conditions exist. 

LEMMA 10: Let  0 < x <_ y < 1. The probabili ty that q~(2 -i) ~ [0, x], where i is 

tile smallest integer satisfying ,p(2 -~) C [0, y], is x /y .  

Proo f  Denote this event by Ax,y. Then 

~A;r,y = Z P((~(2-i) _<: :r)A (c2(2 -i+1) > y) 
i 

I' = ~ .  ~(~(2 -~) _< x I P(2-i+1) = t)d~,i(t) 

= ' ~(h~i(t) 

= . ~ ( ~ ( 2  ') <_ ~[ v(2 -~+1) =t)d.~(t)  

: 2'• E ] ~ ( ( ~ O ( 2 - - i )  ~ ?J) A ( ~ ( 2  - i + 1 )  > y) )  
Y I 

= ~ ' { 3 i :  (?(2 -~) _< y) A (?(2 -~+1) > ~)} = :r 
Y Y 

where the measure ui is the distribution of ~2(2-i+1). | 
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and 

SO 

( 1) 
~(/3) < 7 ( / 3 ) + e < s o n  -k n - l + n  

(11) g o ~ - sin((2r + 1)Tr.~:)l I < e- maxg / = ?~-399 j • 2Zrsoln k <_ 27rn -1. 

The Dirichlet kernel Dr and sin((2r + 1)Jr:r) are aligned in the sense that 

f l  sin((2r + 1)rrx) • D~ > clogn, 

and with (11), 

x(g o cp) • D~. > clogn 

and the probability is 

• . ( C~t - 3  ~C.K1 logT~.logn 
C n3 

\ if2 log n / 

C log n 
> c log n 

// 

e - C n a - C ( K 1 , K 2 ) l ° g  3 n ~ e - C ( K 1 , K ~ ) n a .  | 

This lemma is the "local" component of the proof of Theorem 2. The complement, 

the "global" component, is to show that for typical ~, many pairs i, j satisfying 

the above conditions exist. 

LEMMA 10: Let  0 < x <_ y < 1. The probabili ty that q~(2 -i) ~ [0, x], where i is 

tile smallest integer satisfying ,p(2 -~) C [0, y], is x /y .  

Proo f  Denote this event by Ax,y. Then 

~A;r,y = Z P((~(2-i) _<: :r)A (c2(2 -i+1) > y) 
i 

I' = ~ .  ~(~(2 -~) _< x I P(2-i+1) = t)d~,i(t) 

= ' ~(h~i(t) 

= . ~ ( ~ ( 2  ') <_ ~[ v(2 -~+1) =t)d.~(t)  

: 2'• E ] ~ ( ( ~ O ( 2 - - i )  ~ ?J) A ( ~ ( 2  - i + 1 )  > y) )  
Y I 

= ~ ' { 3 i :  (?(2 -~) _< y) A (?(2 -~+1) > ~)} = :r 
Y Y 

where the measure ui is the distribution of ~2(2-i+1). | 
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LEMMA 11: For n sut~ciently large, for the same g as above, 

Isr. J. Math. 

P{3I, t E N :  fD,..(9o~)>clogn}>l-e-". 
Proof'. We use (2) for 2 -d when d is defined by d := [~@.~ log 2 n] and get 

]p{it-K3 < ~(2-d) < ~-2} > 1 - Cn -2. 

We need intervals Ik := [2 -d(k+~), 2 -d~] such that ~Ik C [Sl, so], so the first point 

is to show that many do exist.. Lenlma 10 ensures that for the random variable 

io defined by 

(~(2 -~°) _< so) n (~(2 -~°+~) > so) 

one has 
~'{~(2 -~o) < c-2'%} = c-2n. 

Denote this event by R1. Next, define 

[ 1 (l°g2 n 'e"4  J i l : = i 0 + d  ~ - 2 n l o g  2e) 

(K1 from (2)), and using (2) and the scaling invariance of c 2 get 

~{~(2-i~)  < ,i-e"4e2n} < C22(io-il) < Ce -2n. 

Denote this event by R2. Between io and is we have > cle '~4 intervals I~. For 

each k we define the event 

~(2-dA') ~,- 1,'3 } 
r~. := ~ t n  2 ~  < ~(2_d(k+l) ) < 

so that P'rk < Cn -2 and the rk's are independent. With these rk's define the 

variable 

X := 7~{~:: Ik C [io, is] Ark}. 

Clearly, EX < Cln-2e n4 so 

1 ~. 1~4 C( : ]__  .Jr ?~ 2 Ce_2n" 

Denote this event by R3. Finally, we can calculate our probability. If none of the 

Ri's happen, we have > ½0e '¢ intervals Ik satisfying the conditions of lemma 9. 

For each IA,, the behavior of ~la I~(0h,) is independent for each k and lemma 9 

gives an estimate of the probability 

P{3Iclk ,r:  f tD, . ' (go~)>clogn}>e-C'? 
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(C depends on our I(2 and I(3, but is still a constant). Totally we get 

I?-,{3I, rCN: fD , , . ( go? )>c ' l ogn}<  

(1 - e-(~'??3) (~clen4) -}- ~ ( R I  LJ R 2 LJ R3) < Ce -2'' 

and the lemlna is proved. | 

Proof of Theorem 2: Define values s,~ and functions g,, as follows: 

1 --e ~4 
8~+1 := 8 n • ~-I/ " , 

{ fn(:rs~l), 4s,,+1 <: r  < . s , ,  
gn(X) := linear, :rE [2Sn+l,4.S'n+l] U [8n, 2.S,], 

0, otherwise 

(take so = 41-) with the relevant ~ 's and the linear portions chosen to make g,, 

continuous. Now pick a sequence nt~ -+ oc fast. enough as to satisfy, for all k, 

{ ( 1 ) }  1 < k  
(12) lP ?,':(IS,.(9,~ o ? ; O ) l >  l)/~ 

I¢k 

(this is possible since S,.(9~ o ?; 0) --+ 0 when r -+ oo for any fixed n and when 

n--+ oc for any fixed r). Now define 

1 
f := E ; ~ g , , k "  ~ log nk 

Clearly, c~f(0; ~) = O(logloglog ~)-1. On the other hand, lemma 11 ensures that 
for sufficiently large n, 

(13) " { 3 1  C [Sn+l,S,~], , ' c N :  f tD,. ' (g,~o?)>cl logn} > 1 - e  -n 

but fy  > ct logn implies that either fo" or f0 u > }c~ logn. Pick any ,'~ sufficiently 

large to allow the restriction r E [1, rl] in (13), and combine this with lemma 6 

to get. 

1 l o g n }  > 1 e -'~ C / l o g m  e N: o 0)1 > ~ e l  - -  - -  

and for n = ha,, again sufficiently large, using (12) this event implies 

~'{ ~ IS~(g,~,;0)l > l / k } <  1/k 
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SO 

If" ~ r c N : l S , . ( f o 9 9 ; O ) l > ~ c ~ - ~  > 1 -  -C/ lognh . -1 /L:  

and taking k --+ ec (which clearly forces r --+ oc) the theorem is done. 

Remark: Merely changing the 1/log 7zA- factors in the proof above, one may get 

a number of other examples of divergence: 

1. For every co(5) = ft(logloglog ½)-1, a continuous function f which satisfies 

w/(5; 0) = o(w(5)), and Sn(f o 99; 0) is almost surely (i.e. with probability 

1) unbounded. 

2. For every c0(n) = o(log log logn), a continuous function f for which one has 

Sn(f o ~; O) > co(n) for infinitely many n's almost surely. 

3. An L ~ function f satisfying S,~ (f  o ~2; 0) > log log log n for infinitely many 
n's almost surely. 

5.  T h e  0 - 1  law 

Our aim in this section is to prove claims of the type "For any f ,  the probability 

that the Fourier expansion of f o 99 converges uniformly (or pointwise, or in 0, 

or . . . )  is either 0 or r ' .  As hinted in [KO98] on page 1037, the first step is 

to transform the desired property into all "interval property", for example, to 

remark that probabilistically, the property 

sup ] f [0 ,~>o ,1] D,,( t- .~,) f(x)cl:r<C 
tC[O,ll 

(i.e. f E g0, the set of functions with uniformly bounded Fourier partial sums) 
is equivalent to 

(14) sup [ D,~(t- :c)f(z)dx < C. 
ic[o,11 Ji 

n>O 
tE[o,l] 

Denote this set of functions with uniformly bounded "interval Fourier partial 

SUlTIS" by 5.  That ? ( f  o 99 E [70) = IP(f o 99 e (T) was shown ill [I~2098] in the 

corollary to Lemma 4.5, and f E (7 is an interval property, in the following sense: 

Definition 1: A map r ( f ;  I) --+ {0, 1}, where f E C('r) is a function and I C 

[0, 1] is an interval, is called an interval property if the following conditions hold: 

(i) T considered as a map C('II') x [0, 1] 2 --+ {0, 1} is Borel measurable. 

(ii) f i r  = glz a.e.  ~ T(f; I) = T(g; I). 
(iii) T(f; [x, y]) = T(f; [x, t])T(f; [t, y]) whenever :r < t < y; T(f; [x, x]) = 1. 
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(iv) T ( f  o L; L - l ( I ) )  = T( f ;  I)  for any linear map L. 

Denote T ( f )  := T( f ;  [0, 1]). When we say that  f E ~7 is an interval property 

we mean tha t  the map defined by 

: 1 sup I [  < c T(f;l) 
JCI  [ i j j  n ) o  

fE[O,H 

is an interval property. Property (iii) of this T is clear (here the difference between 

the classes Uo and (7 is crucial). For property (iv), s tandard argmnents* show 

that  the above is equivalent to 

suPjc, I f j  sin°(t-x)t~x f ( x ) d x  < C  
ofi[O,~) 

tER 

for wlfich (iv) is clear. 

THEOnEM 3: I f  T ( f  ; I)  is an interval property and f is any fimction, then 

P ( T ( / o : )  = 1) E {0, 1}. 

Proo£" Let us discuss the tbllowing fimction, defined on {0 < .r _< y < 1}: 

p(x, y) := E ( T ( f  o Lb.u ] o : ) )  

where LI is the linear increasing mapping of [0, 1] onto I. The analysis of p will 

be based on one equality, (15) below, which we will now prove. 

p(x, y) = E E ( T ( f  o L[::,u] o : ;  [0, ½])T(f  o Liar,u] o : ;  [½, 1]) I : (½)  = t) 

I' = E ( T ( f  o L(,~,y] o : ;  [0, ½])1 : ( 1 )  = t)" 

• E(T(f  o L[x,~] o : ;  [½, 11) 1 : (½)  = t)dt. 

We now note that  

T ( I  o L[x,~] o : ;  [0, 1]) = T ( f  o/[x,y] o ~ o L[o,½]) 

T ( f  o L[x,y] o ( t : ) )  

= T ( f  o L[.r,x+t(~-.~:)] o ~) 

* For example, one might show that the difference between the two kernels (where 
n = [c~J) is unifornfly bounded. 
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and similarly 

T ( f  o Lt=,y] o 4; [½, 1]) ~ T ( f  o Ltx+t(~_=),y ] o ~2), 

SO 

~o 1 p(x,  y) = p(x,  x + t(y - x ) )p (x  + t(y - x),  y)dt  

or, after a change of variable, 

(15) p(x,  y) - Y _ .~: p(x,  t)p(t,  y)dt. 

It might be worth noting that the measurability requirement on T is used only 

to ensure that. p is well defined and measurable on [0, 1] 2. Thus weaker properties 

might also do. 

First, a technical lemma. 

LEMMA 12: If  h(x)  is a bounded function satisfying, for every x < Yo, 

h(x) <_ _ _ 1  flY° h(s)ds,  
YO X r/:rX 

then for every x < t < Yo, 

h(x)  < - - 1  f lu° h(s)ds.  
- y o - t  Jtt 

Proof: If not,, define 

so := sup{s: s < t, h(s) >_ h(x)} 

and let sn -+ So be a series satisfying h(s,,) >_ h(x)  (not necessarily different from 

so). We have, for n sufficiently large, 

<_ h ( s , )  <_ _ _ 1  f ig° h(x) h(s)ds  
YO - -  S n  d s,, 

so 

h(x) < 1 + h( s )d ,  
- -  y o  - -  t + SO - -  S n  t 

and, taking n ~ cx~, the lemma is proved. | 
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LEMMA 13: A measurable function 0 <_ p(x, y) <_ 1 satisfying (t5) is decreasing 
in y ahnost everywhere. 

Proo~ For x < y < z, denote 

~X(x, y, z) := p(x, z) - p(x, y), 

A(x ,y)  := esssup A(x,y ,  z), 
z > y  

and define 

g := ess sup A(x, y) 

and assume to the contrary that p > 0. A satisfies the following: 

z - x p(x, t)A(t,  y, z)dt + p(x, t)p(t, z) p(x, y)dt 

I ( L Y  L z ) < - -  p(x, t)A(t,  y)dt + A(x, y, t)dt . 
Z - - X  

We now iterate this inequality. The second iteration looks like 

- z - x p(x, t)zX(t, y)dt 

1 Y ~ s )ds ld t l  + 
] /  

l(L' >( L - p(x , t )A( t ,y  1 + dt 
Z - - X  

1 (L' > ( ( Y - ~ ) )  = p(~r,t)A(t,y l + l n  z - - x  dt 
Z . - - X  

+ L 
and, similarly, the nth iterate looks like 

_ _ 1  \ J,r ( f y  "-' ( - ~  - x A(x ,y , z )  <_ z - x p(x, t)A(t,  y) ~ in a dt 
k=0 

+ (n -iLZA(x'y't)ln"-'(z-X)dt~l)----==-~ t - x J 

and, when n tends to infinity, the second term vanishes (]A[ <_ 1) and we are left 

with 

A(x ,y , z )  <- y -  L up(x, t )A(t ,y)dt ,  
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which is true for all z. So 

(16) A(x,y)  < _ _ 1  f Y  y - x j.~ p(x,  t)A(t, y)dt. 

Next, fix some small ~ > 0 and get from Lebesgue's density theorem the existence 

of a square [xo, xo + 5] × [yo, yo + 5] where A > p - e on a set of measure > 0.952: 

and we may also assmne that Xo + 5 < Yo and that A(.vo, Yo + 5) > it - -  ~. Our 

contradiction will follow by examining the triangle 

T := {(t, ~): ~o < t < ~ < ~o + 5}. 

Now, on one hand, we have a set Y C [Yo, Yo + 5], mY  > 0.95 of y's such that for 

each y E Y there exists an x E [xo, :~:o + 5] satisfying A(:r, y) > i t -  e and therefore 

using lemma 12 for h(x) := max{0, A(x, y)} (ignoring, for the moment, the p in 

inequality (16)) gives 

1 [ Y  max{0, A(t, y)}dt  > It - e Vy E ] '  
Y Yo Jyo 

This inequality for the average gives a simple measure estimate (assume e < 0.1p) 

(17) m { t : y o _ < t _ < y ,  A ( t , y ) > p - - 1 0 e } > 0 . 9 ( y - y o )  V y • Y  

and on all of T 

(18) m{(t ,  y) • T: A(t, y) > p , -  10e) > 0.7roT. 

On the other hand, returning to (16) and inspecting p we get that A(t, y) > p -1 0 e  

implies 
1 

- -  ] u  p(t,  s)ds > 
10e 

1 
y -  t Jtt It 

and, as before, 

(19) m { s : t < s < y , p ( t , s ) > l - l O O e } > O . 9 ( y - t )  
p. 

but Yo + 5 • Y, which can be combined with (17) and (19) to get 

(20) m~ t (t, s) • T: p(t, s) > 1 - 100e } > 0.7mT. 
p 

Finally, we return to the definition of A and note that p(x,  y) > 1 - c inxplies 

A(x, y) < c, so we can combine (18) and (20) to conclude that for some (x, y) • T, 

i t -  10e < A(x, y) < 10Oe/p, 

and since ~ was arbitrary, the lemma is proved. | 
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Remark: The  function 

1 p(:~,,y)= O, y =  
1, otherwise 

satisfies (15) but  is not  monotone  everywhere.  Thus  the "a lmost  everywhere"  in 

l e m m a  13 is not an ar t i fact  of the proof  but  a p roper ty  of (15). 

LEMMA 14: A lneasm'able function 0 < p(x, y) <_ 1 satisfying (15) is increasing 

in x almost everywhere. 

Proof: Use L e m m a  13 for p'(:r, y) := p(1 - y, 1 - .l:). | 

We wish to avoid the complexit ies  arising f rom the fact tha t  p is monotone  

only ahnost  everywhere.  Luckily, all fllrther operat ions  will be pickings of certain 

values out  of sets of posit ive measure.  Thus,  we can ignore the non-monotone  

tr iplets by s imply redefining the notion of picking. Let us call a tr iplet  :r < y < z 

good when p(x,  y) _< p(x,  z) and p(y, z) <_ p(.v, z); and a t r iplet  x, y, z is good 

when it is good in the right order. 

Definition 2: We say tha t  we pick an x if x satisfies: 

(i) For a lmost  all x2 and x3, the tr iplet  x, x2, x3 is good. 

(ii) If x2 has already been picked, then for a lmost  all x3, the t r iplet  x2, x, x3 is 

good. 

(iii) If  :r2 and x3 have a l ready been picked, then the tr iplet  x2, x3, x is good. 

An induction on L e m m a s  13 and 14 ensures tha t  we can always pick out of 

every set of posit ive measure.  

LEMMA 15: For almost  every x < y < z, p(x,  z) = p(x, y)p(y, z). 

Proof" Define 

(21) A ( x ,  y, =) := IP(x, =) - p (x ,  =)1 

and assume to the cont rary  tha t  

(22) p := esssup  A(x ,  y, z) > 0. 

Again, let e > 0 be arbi t rary,  and let 

- ~-d, Xo  + x - ~-6, Y0 + x - ~ 6 ,  z0 + 
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be a cube where A > # - e on a set of measure > 0.9953; and  also assume 

Xo + 5 < Yo, Yo + 5 < Zo and  A(Xo, Yo, zo) > p - e. As before, we need a method  

to "push" x and z toward y. We s tar t  from the simple 

1 
(23)  y ,  z )  < - -  

Z - - X  

from which we can deduce 

( f f f  P(x,t)A(t,Y,z)dt + JiZA(x,Y,t)p(t ,z)dt)  

SUBLEMMA: Assume A ( X l , Y l ,  Zl) > ~t--£ w i t h  IXl - Y l [  > 2/] and  [zl - y l l  > 2v. 

Then there exist x2 and z2 such that 
(i)  x2  < Yl < z2; 

(ii) A(x2, Yl, z2) > # - 4e 

(iii) Yl - x2  < 2v; 

(iv) z2 - Yl < 2v; 
(v) either v < Yl - x2 or v < z2 - Yl. 

Furthermore, if xl, Yl and  zl aye picked in the sense of Definition 2 above then 
x2 and  z2 are also picked. 

Proof of sublemma: Denot ing 

R1 : :  { ( x ,  y I ,Z1):  3; E (Xl,Yl)}, R2 := {(gL:I,Yl, Z): Z e (yl,Z1) } 

and using (23) we get 

ess sup A(x,  y, z) > p - e. 
(x,y,z)ER1uR2 

Let us assume tha t  ess supR 2 > # -  e. The proof of the other case will be identical.  

We denote 

M(~:) :=  esssup A(x,  Yl, z) 
z~[m,zl] 

(SO tha t  M ( x l )  > # - e) and, using (23) again, we have 

A(x, yl, z) < --z_ ( f ~ i  M(t)dt + fy: M(x)dt)  ' 

SO 
M(z) < _ _ 1  f l  yl M(t)dt 

Yl -- x .  Ix 
and  we can use lemma 12 for M to obta in  

1 f y l  M(t)dt > p ~. 
2P Jyl --211 
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We get a set X1 C (Yl - 212, Yl - 12) of positive measure with x E X1 satisfying 

M ( x )  > # - 2~, which implies a set of positive measure X2 C (Yl  - 212, Yl -- 12) x 

(Yl, Zl) with (x, z) C X2 satisfying (x, Yl, z) > p - 2~. Let us pick a z3 such tha t  

X3 :=  {x: (x, z3) c X~} has a positive measure. If  z3 < Yl q- 2u, the lemma is 

proved we denote z2 :=  z3, pick an x2 out of X3 and finish. Otherwise, we 

define 

M 2 ( z ) : =  esssup A ( x ,  yl ,  z) 
xC[yl --2u,yl] 

and again use Lemma 12, this t ime for M2, to get 

~ y1+2, M2(t )d t  > p - 2c. 
1 

We complete the proof  by picking z2 E (Yl + 12, Yl + 212) with M2(z2) > # - 4e 

and then picking an x2 • (Yl - 212, Yl) satisfying A(x2, Yl, z2) > It - 4~. | 

Let us now complete the proof  of Lemma 15. First we use the sublemma for 

xo, Yo, zo and 12 = ¼5. Denote the resulting values by xl  and Zl. Let us assume 

tha t  Yo - xl  > ¼5 - -  it will be easy to verify tha t  the same proof  works in the 

second case. We return to (23) and observe tha t  A(Xl,  yo, Zl) > # -  4~ implies 

( f x  ~ z l  ) 4~ 1 yOp(x l , t )d t  + p(t,  z l )d t  > 1 - - - ,  
Z1 -- 221 1 o # 

and thus we can pick a t] • [½.~, + ½Yo, Yo] satisfying p(xl,t,) > I - 32~/#. 

Denote now I := (0.6xi + 0.4ti, 0.4xi + 0.6t,). Since 

III = 0.2(tl -- 2L:1) > 0.1(yo - 221) > 0.0255 

and since I C [Y0 - ½& Yo + ½5], we can pick Yl • I such tha t  

m{(x ,  z) • [Xo, Xo + 5] > [zo, zo + 5]: A(x, Yl, z) > p - c} > 0. 

This allows us to proceed and pick x2 and z2 satisfying 

A(x2 ,y l , z2 )  > p -  ~. 

We use the sublemma again, for x2, Yl, z2 and 12 = 0.055. Denoting the output  

of the claim by x3 and z3 we are finally faced with the following situation: 

xl  <x3 <yl  < z3 < t l  < Yo < zl,  

I)(221, t l )  > 1 - 3 2 e / p ,  

A(X3, Yl, Z3) > ]1. - -  4 e .  
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This, however, is a contradict ion to the assumption # > 0 since the monotonici ty  

of p gives 

p(X3, Yl), P(Yl, z3) > 1 - 32e/p,, 

SO 

A(X3, Yl, Z3) < 1 -- (1 -- 32e/p) 2 < 64e/p 

and, since e was arbitrary,  # nnist be zero. | 

The fact tha t  p(x, y) is multiplicative only ahnost  everywhere requires us to 

use a variation on the s tandard  0-1 law. The formulation follows: 

LEMMA 16: Let f~ = I-I f~,, be a (product) pwbabil i ty  space and X a random 
I ! variable defiJ2ed on ~2 such that for almost  every wl, ~z~ E ~21 . . . . .  co~, c~ n E f~,~, 

! 

Then X is similar to a constant, h~ particular, if X -- 1A, then ]?(A) = 0 oi" 

P(A)  = 1. 

The proof  is identical to the proof  of the s tandard  0-1 law - -  see, e.g., 

[K85, page 7]. 

Proof of Theorem 3: We want to use Lemma 16 with the independent variables 

X~,~, Clearly, we may assmne tha t  the number  of variables in the lemma is 

2 N - 1 .  Now, t a k i n g E ( . I  (X, ,k  =aJn,~}) for n---- 1 . . . . .  N a n d  1 < k < 2 '~ is 

identical to taking 

E(. I {~ (~2 -~ )  = s~.}~=o) 

(write So = 0 and S2N ---- 1) and then 

~:(T(f o ~;[0, 1])1 {~(~2 -N) = sA,}~=o) 
2 N _ I  

E (  U T ( f  ° : ; [k2-N ' (k -4 -  I ) 2 - N ] ) ] { : ( k 2 - N ) - - - - " % } ~ : 0 )  
k=0 

= 1-[ E(T(f  o ~; Ik2 -N,  (~ + 1)2-N]) I {~(12 -N)  = ~1}~=~,k+,) 
k 

= I I E ( T ( f  o L[~,s~.+~] o ~2)) 
k 

~-- Up(Sk,  Sk+l) = p ( 0 , 1 )  for a.e. {.%} 
k 

and the theorem is proved. | 
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Theorem 3 can be applied to a number  of harlnonic properties of f o ~. Let us 

name a few, wi thout  proofs: 

• Uniform convergence of S ,  ( f  o ~2) --+ f o ~. One possible corresponding 

interval proper ty  is 

T ( f ; I ) = l e * V , J C I ,  liln f D n ( x - t ) . ( f ( ~ ( t ) ) - f ( p ( x ) ) ) d t = 0  
~Z--+O0 ~.] 

uniformly in x. Showing tha t  this is probabilistically equivalent to f C U(T) 

is similar to the proof  tha t  U0 is equivaleut to [). 

• Pointwise divergence on an infinite~uncountable~dense~second category set. 

All these properties (or their COlnplements) are interval properties to begin 

with, so Theorem 3 applies directly. 

• Pointwise convergence everywhere. 

• Pointwise bounded Fourier partial  sums. 

• For any ~ ,0~) /z  oc, 

S,~(f o .g,) = o(g,(n)) 

unifornfly or pointwise everywhere. 

[DF65] 
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