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ABSTRACT

Let ¢ be a Dubins-Freedman random homeomorphism on [0, 1] derived
from the base measure uniform on {r = %}, and let f be a periodic
function satisfying |f(8) — f(0)] = o(log log log %)"1. Then the Fourier
expansion of f o converges at 0 with probability 1. In the condition on
£, o cannot be replaced by O. Also we deduce some 0-1 laws for this kind
of problem.

1. Introduction

This paper is a continuation of an earlier paper, [KO98], where a number of
questions related to the Fourier expansions of f o ¢ were discussed, most no-
tably conditions under which S,,(f o ) converges uniformly for a set of ¢'s with
probability 1, where S,, stands for the nth Fourier sum. It was proved that if

ws(f) =0(10g10g§~)_1

then S, (f o @) converges uniformly almost surely, where ws(f) stands as usual
for the modulus of continuity of f, i.e.

ws(f) == sup [f(x) = f(y)l,

Jz—y|<8

and that this result is sharp (Theorems 4 and 6 ibid).
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In sections 3 and 4 we address the question of convergence at a specific point.
The most obvious formulation might be “under what conditions does S,,(fop){(z)
converge?” However, in this formulation it is impossible to get local conditions
on f since ¢ smooths out all the points. A better formulation uses conditional
probability, and reads “under what local conditions on f near y do we have that

Sn(fop)@)|p(x) =y

converges?” Essentially, the answer would be the same, i.e. a triple log condition,
but this formulation incurs a number of technical problems, so we simplify the
proof making use of the fact that »(0) = 0. Thus we reached the formulation of
the result in the abstract, i.e.

THEOREM 1: Suppose f is a continuous function on the circle satisfying

1y =1
1£(6) = f(0)] = 0(log10g10g 3) :

Then the Fourier expansion of f o ¢ converges at 0 with probability 1.

and this condition is sharp in the following sense:

THEOREM 2: There exists a continnous function f satisfying

1y -1
[£(6) = £(0)| = O(loglog log <)
for which the Fourler expansion of f o ¢ diverges at 0 with probability 1.

Actually, f may be constructed to satisfy this condition globally, i.e., ws(d) =
O(logloglog §)~1.

It is instructive to contrast these results with the non-stochastic case. The re-
sults of [KO98] are analogues of the Dini-Lipschitz test [259, 2.71] which gives a
sufficient sharp condition for uniform convergence of Sy,(f), wys(8) = o(log 3)~%;
for convergence at a point we have the Dini test [259, 2.4] which gives a sufficient
condition [ }wy(d;x) < oo (again, sharp) where wg(8;x) is the modulus of con-
tinuity of f at the point x. Thus in the classical case the condition for pointwise
convergence is slightly stronger, or in other words, a global estimate of w; gives
better information about convergence at a specific point than an estimate only
at that point. This behavior, as remarked, does not happen in our probabilistic
settings. Of course, we also get a much wider gap, an additional log factor. We
also wish to reiterate remark 4.4i from [KO98]: there exist functions f satisfying
wys(8) = O(loglog )" such that the Fourier expansion of f o ¢ diverges at a
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{random) point. This result has no non-probabilistic equivalent. For a discus-
sion of properties of S, (f o v) where p is non-probabilistic, e.g. problems such
as when S, (f o p) might satisfy certain properties for some ¢, all ¢ or a second
category set of ¢ see [K83], [O81] or [085].

Of course, the discussion above does not make much sense without specifying
the probabilistic model for picking ¢, and the group of homeomorphisms has no
Haar measure. We shall be using a model suggested by Dubins and Freedman
[DF65] which uses a base measure v on [0,1]2. Roughly, a point (z,y) on the
graph of ¢ is chosen at random using v, then this process is repeated for the
rectangles extending from (0,0) to (2,y) and from (x,y) to (1.1) with rescaled
versions of v. Repeating this over and over we get a sequence of points which can,
with probability 1, be closed to a graph of a homeomorphism [0, 1] — [0, 1] with
»(0) = 0 and (1) = 1. A proper, though restricted, definition is provided in
section 2.2. It must be noted, though, that Dubins and Freedman were not inter-
ested in homeomorphisms but in measures, and considered the Lebesgue-Stieltjes
measures dy as random probability measures on [0, 1] and studied conditions un-
der which a typical dy might be singular, atomic and so on.

Not all Dubins—Freedman measures are born equal, and the most natural ones
are the ones with base measure uniform on {x = 3}, {y = 1} and on [0, 1]% See
e.g. [GMWS6] for a specific discussion of these three measures — they studied the
properties of the set p(x) = x and other interesting facts about a typical . This
paper will be using the first one. Of course, measures centered on a vertical line
are easier to analyse because one can have an explicit formula for the distributions
of p(x) for dyadic x, and sometimes for other x’s too; for example, in the uniform
case, ,9(%) has the density function 1 — 2 [KO98, Lemma 1.6]. What might be
less clear is that I really need the distribution to be uniform. Indeed, generalizing
the results of [IKO98] for measures on { = 1} which are non-uniform is an open
problem. Such a result could be interesting, for example, in order to play around
with the almost-sure Holder constant of .

In the last section we discuss the 0-1 law. It turns out that for this kind
of problems, the 0-1 law is not self-evident. We shall reduce the problem to
a functional-integral equation (15) which can be solved by elementary manipu-
lations. This general technique allows one to get 0-1 laws for many problems
related to S, (f o y): uniform convergence, pointwise convergence, boundedness
of partial sums etc.

I wish to end this introduction with a question I wasn’t even able to formu-
late properly. If I C [0,1] is a dyadic interval then the conditional restricted



192 G. KOZMA Isr. J. Math.

homeomorphism ¢ := || (1) is similar to the original ¢ — this is the “scaling
invariance”, see (1) below. If, however, [ is not dyadic then this is no longer
true, but % still seems to be very similar to . Many of the results of this paper
and of [KO98] can be reproved for 1. It could be very interesting (and useful) to
prove that for “infinitesimal” problems, 1 and ¢ are equivalent.

2. Preliminaries

2.1 NotaTions. We denote by T the circle group, which we identify with the
interval [0, 1]; m denotes the Lebesgue measure on [0, 1]; C and ¢ denote absolute
positive constants, possibly different, with C usually pertaining to constants large
enough and c to constants small enough. For a continuous function £, || f|| denotes
its supremum and supp f its support.

P denotes the probability of some event (with the measure on the random
homeomorphisms defined in the next section); E denotes the expectation of a
variable, and V its variance. The notation X ~ Y for two variables means “X
and Y have the same distribution”.

Dyadic rationals are numbers of the type k2~", k and n integers, and dyadic
intervals are intervals of the type [k27", (k + 1)27™]. For an interval I := [a, ]
the boundary I is the set {a,b}; |z] denotes the largest integer < z and [x]
the smallest integer > .

D,, denotes the Dirichlet kernel on [0, 1], i.e., sin((2n + 1)7z)/ sin(7x), so

1
Sp(frx) = / Dy (x—1t)- f(t)dt.
0
The pointwise modulus of continuity of f at x is defined by

wy(x;0) == sup |f(z+p) - f(2)l,
0<|p|<d

where for § = 0 we define wy(x;§) assuming the function to be periodic.

2.2 RANDOM HOMEOMORPHISMS. Let’s start with the following definition of
the particular Dubins—Freedman measure we will be using, which will be easy to
work with. Let X, r be independent uniform variables in [0,1] for any n € N and
any odd 0 < k < 2". We define an increasing function ¢ on the dyadic rational
using the following procedure: Start by taking ¢(0) = 0, (1) = 1, and

99(%) = X11.
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On the second step, define

P(3) = 9(5) Xau, 9(3) = 0(3) + (1= 9(3)) - Xag,

Le. ¢(1) and (2) are distributed uniformly on {0, ¢(3)] and {©(3), 1] respectively,
and are otherwise independent. We continue this process, at the nth step taking

p(k27) 1= (k= 1)27") + X - (((k +1)27) = o((k — 1)27).

This defines ¢ on all dyadic fractions. With probability 1,  can be extended to
a homeomorphism of [0, 1] [DF65, Theorem 4.1]. We denote this measure by P,
and by ¢ the random change of variable.

The most useful property of ¢ is “scaling invariance”, which roughly says that
for any dyadic interval I, ¢|; behaves like a small copy of ¢. To be more precise,

LEmMMA 1: If I = [k27",(k + 1)27"] is a dyadic interval, then

(1) (l(dI) = {a,b})|r ~ (po L)-(b—a) +a
where L is a linear increasing map of I onto [0, 1].

The proof may be found in [GMW86], Theorem 4.6.

Finally, we need the following simple calculation, which can be found in [KO98]
in Lemma 1.4 and the remark that follows. For some constants Ay and K, we
have

(2) P{rfv < o(r) < P2} > 1 - Cr?
for any r > 0. It will be convenient to assumme KNy < 1 < K.

2.3 AND FOURIER EXPANSIONS. We need the following lemmas, which are

deeply related to (though unfortunately not direct consequences of) Theorem 2
from [KO98}:

LEMMA 2: For any continuous f, n, r > 2/n and K > 0,

]P’( /TH(foLp).Dn > I\'||f||> < Cexp( -~ ¢ vir K).

log nr
LEMMA 3: For any continuous f, n, interval I and K > 0,

P(‘ /I(fw)ﬂn

> I\'||f||> < Ce".
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LeMMA 4: For some constant 3, the same ¢ as above, and any constant K,

P(‘/j(f°¢%l%

In other words, if Theorem 2 of [KO98] gave an estimate of fol( fog) Dy then
these lemmas give split estimates for the head and the tail. The proof of Lemma

> 2R wy(0; C"’ﬁ)) <Cr?+ Ce" .

4 is an easy corollary to Lemma 3, so let’s start with it:

Proof: Clearly, we may assume r = 27*. For each of the segments [—r, 0] and
[0,7], we use (2) (8 = Ns), apply the scaling invariance of ¢ and finally use
Lemma 3 for a scaled version of f. |

As for the proofs of Lemmas 2 and 3, they follow quite closely the proof of the
aforementioned Theorem 2, so the rest of this section must be read parallel to
it. For Lemma 2, start from page 1029 ibid. There ||f|| = 1 (which we can also
assume here, of course), I, denotes an arc of T symmetric around 0 containing
2k — 1 peaks of the Dirichlet kernel D,, and Y}, := f Ie D, - {foy): Iy and Y}, are
connected by the inequality

log? k
E0} | olr) < C8 %
ko k 1\7

which is Lemma 2.6 ibid. We define

log i
Jj=|nr] and p:= 1 08J

Vi

with C chosen to satisfy

PYs| > g} @lr,) < 5 Vs 2.

N

With this ;¢ we get

LEMMA 5: If, for a given € > 0 and v > 1, the inequality
P(Ys| > vl olr,) <€ Vs>,

then 4
P(Ysl > (2v+ 2)p| #lr,) < €%

The proof is word-for-word identical to the proof of Lemma 2.8 ibid. Now,

starting from the definition of p we apply Lemma 5 inductively ! times and get

that RPN N
(vl > it | 2l < (5) (7)< (5)
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where the d;’s are defined recursively by di = 1, d; = 2d;_; + 2. Clearly d; < C2'.
Picking a maximal [ such that ud; < K we get that 2' > ¢A'/p and Lemma 2
follows. |

The proof of Lemma 3 is even more similar to that of Theorem 2 from [K098],
and we shall omit it.

3. Pointwise convergence

Proof of Theorem 1: Throughout the proof we shall assume that f € C(T) is
some fixed function, that ||f|] <1 and that f(0) = 0. We fix n sufficiently large
for the rest of the proof. Define r = (log5 n)/n. Lemma 2 will ensure that

(3) ]P’(

Let us now assume that some my and my satisfy m; — g < n/ log®n. A simple

>

‘logl"sn) < C

1-r
2)-D < Cexpf =81 o &
/,. (Fop)- Dy logn)‘ exp( Cloglogn n3

calculation will show

Doy, = Do, | = lQCos((ml + my + 1)) sin((m; — mz)?ra‘)‘ <o M

sin{mx) log® n

SO .
/ |Dm1 - Dm:_,l < C/ IOg n

which, combined with (3}, gives
> L < ¢
logn n3’

Thus, if we only calculate the behavior of [(foy)- Dy, on a sequence of m’s from
n to 2n with jumps [n/log® n], we will get a uniform estimate for all m € [n, 2n].
Now is the time to use the log-log-log assumption on f. Let ¢(n) — 0 be some
sequence converging to 0 sufficiently slow as to satisfy

(4) P( / (F09)- (Do = D)

1 :
mwf(O; n~Py = o(loglog logn)~1.

Remembering Lemma 4 (from which we also take the 3 above), this gives

P( /:;_(fw)-Dn

(2, as usual, denoting the opposite of 0). We use this inequality on a sequence
of m’s which has a length < C'log®n and throw in (3) and (4) to get

Q(log log log n)

< C/log®n

> c(n)) < Cri4Ce®

> €(n) +

1
]P’(Elm € [n,2n], ‘ / (fog) Dy,
0

S P o
logn log’n n3’
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and summing these probabilities for n = 2 we get the desired result: that these
events happen only for a finite number of n’s for almost every . |

Remarks: 1. Actually, we never used the continuity of f. The theorem holds
for any L*° function satisfying

1£(6) = f(01)] = o(logloglogé)*

and 1
£(1=8) = £(17)] = o( logloglog 5

(for an explanation why S, (f o ¢) is even well defined for non-continuous f, see
[KO98, Lemma 1.3]). If f(0%) # f(17), we can simply take f — g where g is an
appropriate linear function; h := go ¢ will be a monotone function, for which we
always have that the Fourier expansion at x converges to 3(h*(z) + A~ (z)).

2. A similar proof shows that for any continuous function f,

Sulf 0:0) = o(logloglog n),
and for any f € L,
Sp(f 0 ¢;0) = O(logloglogn).

These results, too, are sharp.

4. Sharpness

This section will be devoted to the proof of Theorem 2. Ideologically, the essen-
tials of the proof are contained in the following heuristics. Examine the following

function:

sin2m{tnf + i), te€nFa Tt 1<k < e,
fn(t) = nt
0, t<n¢

with some phases ¢, € [0,1] (usually chosen to make f, continuous). On each
interval o~1([n"%,n7%*1]), foy has n—1 peaks, and with some small probability
they will be “aligned” with the peaks of some Dirichlet kernel D,.. The probability

—-Cn

to get a good alignment of n — 1 peaks is approximately e , and the variables

Plo=1 (= n-r1))
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are “approximately independent” so one would expect that in > ¢“™ such vari-
ables, with big probability this alignment will happen at least once. In this case,
we will have

/ (fo@)-D7_zc/|Dr|>clogn.
1 ([n=k o)

So

n4
sup /(fOQ)'Dr>Clogn>clogloglogne
1clo.1. reNnJ1

To make these calculations into a proper proof, we need to do the following:
(i) Explain what it means to “get a good alignment of f o p with D,” and

—Cn but a rather

calculate the probability. The calculation will not give e
weaker estimate — hence the element n* in the definition of f,.

(ii) Explain how to overcome the problem that these “approximately indepen-
dent” variables are not properly independent.

(iii) Explain why it is enough to get a supremum of f; for some I C [0, 1] rather
than of f[m].

(iv) Combine the f,’s into a single function f which will satisfy the requirements
of the theorem.

We start with issue (iit).

LEMMA 6: Let ||f|]| <1, K > 1, p and ro < r1 be given with the condition

{ sup ’/ >I\} > p;
yE[O ” (4] y
rée( rg
then
1,- C
]P’{ sup |5, (fo;0)] > 5[\} p—
rélro.m] K

The proof is practically identical to the proof of Lemma 4.5 from [KO98], and
we shall omit it. The reader might want to skip to the final steps of the proof of
Theorem 2 to see how this lemma is used.

To investigate the independence properties of ¢, i.e. to explain issue (ii), let
us return to the variables X,  defining the measure. For each i > j € N define
2; ; to be the o-field spanned by

{Xpw 27 <h27" <277}

Clearly. j > k imply that €2; ; and Q; are independent.
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LEMMA 7: Leti > 1 be an integer, 0 < e <l and0<y<a<1-—¢ Then

()

. € i
STy pa——
2=y 2max(1,|logyl)

This is a somewhat tedious exercise in calculus. Let us work it out. A
simple calculation (which may be found in [IXO98], (1) page 1022) shows that
the distribution function of g(?‘i) is
6 il
(6) i 1 og'”
which, using the scaling invariance of o, gives the conditional distribution func-
tion

(7) dist((1/2) = @ v-log 1 (y)

i—2
i) {'l_mw‘ >y

r<y.
This distribution (as a function of x) is increasing until g = ye'~2 and then

decreasing — which clearly implies that the probability (5) as a function of z is
increasing until some 2; defined by the equality

og"*(x1/y) _ log"*((x1 +)/y)
X Xy +€

and then decreasing, so the minimum is achieved at @ = y or, if 1 < 1 — ¢,
possibly at x =1 —e. At @ =y we have

log’"l(l +€/y)
og' " (1)

If e/y < 2 we estimate log(1 + ¢/y)} > €/2y > ¢/2 and otherwise log(1 + €/y)
> 1> ¢/2, so in either case we get (5). At x =1 —¢,

P(e( 27) =y) =

i . _ri-2‘, ;
P(p(1/2) € 1= e 1] 9(27) =) 2 f'l.‘sé.?g( ;:?1012"8-1(;;/”

and the minimum, remembering vy < 1 — ¢, is achieved at x = 1, so it equals
* Thogy]
and again we get (5). 1

In the following lemma and its proof the notation P(-| ¢(27%) = ¢;) is under-
stood as a shorthand for lims_,o P(- | [¢(27%) — ¢;] < 6).
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LEMMA 8: Let i € N, let p; € [0,e7!] and let 7 be an increasing Lipschitz
homeomorphism [27%,1] = [¢;, 1] with a constant IV, Le. |7(x) —7(y)| < K|z —y],
and Jet 0 < ¢ < e~'. Then

c(\)e C(K)i]loge|
|log '\Pvil) '

This lemma is a variation on Lemma 4.1 from [IKO98], in which only the ¢(R')*/€

P( max |p(r) —7(x)| <e
2-i<a<l

P(27) = 1) > (B (

factor appeared. Think of ¢(K)Y/¢ as the “main term”. with the other factor
meaningful only for “unusual” cases where (; is very small or i is very large.

Proof: 1t is clearly enough to consider € = (I + 2)/2? where ¢ is some integer.
For any s < ¢ we denote

4, = {¢ [¢(i27%) = 1(j27%) < 279, V2°~ '<J<2}

s—1. ©(27%) = ;). Denote j* to be the minimal j > 257¢,
If ¢ € A,_; with some s < ¢ then, for any odd j # j*, the probability of the
event

Let us estimate P(4;

lp(i27%) — 7(j277)) < 277
can be estimated from below by
9~q 92—
8 - - 2 ==
®) AGTDE) = oG = 12| > K2 4 2=

and for different j's these events are independent. This estimate also holds for

j=yj*if s >4, and if s =4, j* is even and therefore irrelevant. Otherwise, for
j = j* use Lemma 7 and the scaling invariance of ¢ to get

P(lp(j"27) = 7(27*) < 277] [p(27) = )

) <2111ax(1 |log2(—q———£——— ) (2|log\,,,1)'

el +132 ?))I

Summing (8) and (9) (and replacing s with s + 1) we get

y e e 2—g=1 i
P(fls-{»] | As’ ¢(2 ) P k}:‘l) > (IX2q 8 +2) . (—) )
| log ]
SO

P(4, | 9(27) = 9i) > ( ) ]:[ R +2)"%2-la=9)

27971 \iq =
> ( ) -exp( — 29log(A + 2) — 2¢ logQZ 2—J>
i=1

[log o]

> (fogy) " e~ )
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and clearly Aq implies |jp — 7|| < e. |

For the following lemma, we fix n € N large enough and sg < 1 and inspect
the function

"— f‘n(xsal)v T < S0,
9(x): {0, otherwise;

n4
we define s; = son™¢ so that supp g = 51, o).

LEMMA 9: Leti > j € N and s1 < ¢; < ¢; < sg satisfy 4n < 209 < n' and
n? < ;/p; < n2 and let us define the event

Aij = {p2) = g} N {e277) = ¢;}.

Then
IP’(HI c27h27, reN: /(gogo) -D, > clogn| Ai,j) > Ok Kojn®
I

Note that the above event is in €2; ;.

Proof: The conditions on ¢; and ¢; imply that for at least one k,
(10) [son ™%, son ¥+ C [gs, 05)-

Define k to be the least one satisfying (10);

6 _2n-4

— ()Y a=—0  pg="~""%
r=Q@2n)2 a=g-m, B=oo

I=a,8);
and let us consider the piece-linear homeomorphism 7: [27%277] — [p;, ¢;]
defined by '
727 =g, (@) = (3 - ¢i)son”*,
27 =9, T(B) = (n—1—y)son "
These values were, of course, chosen to ensure go7|; = sin((2r 4+ 1)mz). Simple
algebra shows
' Yi — i Yi
< C——‘"—.Z_j —5 < 02_j.
Combining this, lemma 8 and the scaling invariance of ¢ gives
ce/; )—C‘('i—j)llog e/e;l

B(max (@) -~ 7(2)] > ¢| Aij) > e/ [og(w:/9;)]

2-i<p<2-i
Taking € = n™3¢p; will give

ola) > T(a) —e> spn™* (2 - %)
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and ]
, k(. 1
P(B) < 7(B) + € < son (n 1+ n)

SO

(11) gop —sin((2r + V)yma)l; <e- mz}xg’ =n"3p; - 2755 0" < 2mn7 L
v

The Dirichlet kernel D, and sin((2r + 1)7x) are aligned in the sense that

/sin(('Zr + Y)rz) - Dy > clogn,
I

and with (11),
Clogn

/(gogp)-D,.>clogn— > clogn
I
and the probability is

9—6'113—6'(1\'1 JNa)log?n e C (K1 )0

>

n3 en~? C-Kilogn-logn
>t >

Lslogn

201

This lemma is the “local” component of the proof of Theorem 2. The complement,

the “global” component, is to show that for typical ¢, many pairs i, j satisfying

the above conditions exist.

LEMMA 10: Let 0 < x <y < 1. The probability that »(27%) € [0, ], where i is

the smallest integer satisfying ©(27%) € [0,y], is 2/y.
Proof:  Denote this event by A, ,. Then

Pary = Y B((9(27) S 0) A (0277) > )
T | |
= Z/ P(p(27") <w ’ 4,9(2_’+1) = t)dy;(t)
.
= / v (1)

= Z/ iﬁ”(v(fi) <yl 27 = t)dwi(t)
i vy

Il

P27 < 9) A (27T > )

TPITi: (o(2-1) < —it+1 _r
yﬂ”{3 (P(27) <y A ((2777) > y)} y

where the measure v; is the distribution of @(274+1). [ |
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LEMMA 11: For n sufficiently large, for the same g as above,

]P’{EII. reN: /D,. -(goyp) > (:logn} >1l—-e™"
Proof: We use (2) for 2= when d is defined by d := [+ log, n] and get
P{n ™™ <2 <n™?}>1-Cn2

We need intervals I, := [274*+D 2= guch that I}, C [s1, So]. so the first point
is to show that many do exist. Lemma 10 ensures that for the random variable
ig defined by

(9(27%) < s0) A ((27F1) > 50)
one has
IP{(,Q( Lo < 6—211S }__ 6—211

Denote this event by R;. Next, define
iy :=1dg + d[dl (logon - €™ — 2nlog, e)J

(IVy from (2)), and using (2) and the scaling invariance of ¢ get

]P’{ 99(2_?:1) < n_"n4 62"} < C2Hio—h) £ ™2,
p(277%)
Denote this event by Rs. Between ig and ¢; we have > 016"4 intervals I,. For
each k we define the event
—dk
e "2 S‘9(2 ) —I\’a}
TR = {n < ————————@(2_[1(1\:_#1)) <n

so that Pr, < Cn~2 and the r,’s are independent. With these r,’s define the
variable

X = #{k: I C lig 1] A e}
Clearly, EX < e;n~2e™" so

]P’{ X > —cle } < Ce ¥ < Ce i,

Denote this event by R3. Finally, we can calculate our probability. If none of the
R;’s happen, we have > %clen4 intervals I}, satisfying the conditions of lemma 9.
For each Iy, the hehavior of ¢|s, |¢(01}) is independent for each k and lemma 9
gives an estimate of the probability

]P’{EII C Ii,r: /Dr (gop)> clogn} > =0’
I
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(C depends on our i's and L3, but is still a constant). Totally we get

]P’—»{EI, reN /D,. “(goy) > clogn} <
I

.3 nt .
(1—e=C"")Fe™) L PRy UR, UR3) < Ce™

and the lemma is proved. |

Proof of Theorem 2: Define values s,, and functions g,, as follows:

4

—em

1
Sn+41 = Sp ot N )

fo(esyl), 4suq1 < 2 < sy,
gn(2) := ¢ linear, X € [28p41,45n41] U [sn, 285],
0. otherwise

(take sp = %) with the relevant ’s and the linear portions chosen to make g,

continuous. Now pick a sequence n; — oo fast enough as to satisfy, for all k,

(12) P{a,-; (18 (gn, © 2:0)] > 1) A <Z|S (gny © ©:0)| > >} %

I#k

(this is possible since S,(g, o ¢;0) — 0 when r — oo for any fixed » and when
n — oo for any fixed r). Now define

1
f - ,‘Z mgnk-

Clearly, w¢(0;6) = O(logloglog %)_1. On the other hand, lemma 11 ensures that
for sufficiently large n,

(13) ]P’{EI C [snt1.80). T EN: /D,j “(gnoy) > c1log n} >1—¢ "
I

but [ i’ > ¢ log n implies that either f(;r or [ > 4c1logn. Pick any ry sufficiently
large to allow the restriction » € [1,r1] in (13), and combine this with lemima 6
to get.

P{3r € N:[S,(gn © »;0)| > (1 logn} >1—e™" - C/logn,

and for n = ny, again sufficiently large, using (12) this event implies

]P’{ > 180 (gn,:0)] > l/k} <1/k

£k
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S0
1
]P’{Elr EN S (fop;0)] > icl - Z} >1—e ™ —C/logng — 1/k

and taking £ — oo (which clearly forces r — oo) the theorem is done. |

Remark: Merely changing the 1/logn, factors in the proof above, one may get
a number of other examples of divergence:
1. For every w(d) = Q(logloglog %)_1, a continuous function f which satisfies
w(0;0) = o(w(d)), and S, (f o ¢;0) is almost surely (i.e. with probability
1) unbounded.
2. For every w(n) = o(logloglogn), a continuous function f for which one has
Sn(f 0 ;0) > w(n) for infinitely many n’s almost surely.
3. An L* function f satisfying S, (f o ¢;0) > logloglogn for infinitely many
n’s almost surely.

5. The 0-1 law

Our aim in this section is to prove claims of the type “For any f, the probability
that the Fourier expansion of f o ¢ converges uniformly (or pointwise, or in 0,
or ...) is either 0 or 1”. As hinted in [KO98] on page 1037, the first step is
to transform the desired property into an “interval property”, for example, to
remark that probabilistically, the property

D, (t - 2} f(x)dx
(0,1]

sup <C

n>0
+€(0.1]

(i.e. f € Uy, the set of functions with uniformly bounded Fourier partial sums)
is equivalent to

(14) sup
1clo,1)
¢£[€°11

<C.

/D,, (t — x)f(x)dx
I

Denote this set of functions with uniformly bounded *“interval Fourier partial
sums” by U. That P(f o € Up) = P(f o p € U) was shown in [KO98] in the
corollary to Lemma 4.5, and f € U is an interval property, in the following sense:

Definition 1: A map T(f;I) — {0,1}, where f € C(T) is a function and I C
[0, 1] is an interval, is called an interval property if the following conditions hold:
(i) T considered as a map C(T) x [0,1]? — {0, 1} is Borel measurable.
(i) flr =glr ae. = T(f; ) =T(g;: ).
(iit) T(f;[x,y]) = T(f; [z, t))T(f: [t,y]) whenever & <t <y; T(f;[x,2]) = 1.
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(iv) T(f o L: L=(I)) = T(f: ) for any linear map L.

Denote T(f) := T(f;[0,1]). When we say that f € U is an interval property
we mean that the map defined by

T(f;I)=1<« sup
JCiI
n>0
1€{0,1]

<C

/ D, (t — x)f(x)dx
J

is an interval property. Property (iii) of this T is clear (here the difference hetween
the classes Up and U is crucial). For property (iv), standard arguments* show
that the above is equivalent to

sina(t — @
sup / stwa(t - ) f@)de) < C
JCiI J t—2x
a€[0,5)
tER

for which (iv) is clear.
THEOREM 3: IfT(f;I) is an interval property and f is any function, then
P(T(f o) = 1) € {0,1}.
Proof: Let us discuss the following function, defined on {0 < x <y <1}:
pla,y) :==E(T(f o Lizyy09))

where L; is the linear increasing mapping of [0,1] onto I. The analysis of p will
be based on one equality, (15) below, which we will now prove.

p(e.y) =EE(T(f o Lz yyo 3 [0. 5)T(fo Lo i [5. 1) | w(3) = 1)
= /OIIE(T(f o Lipyiowil0,5))| w(3) = 1)
‘E(T(f o Lieyy o i[5 1) | w(3) = t)dt.
We now note that
T(f o Lipyyo9:0,3) =T(f o Lz yyopo Li.yy)

~T(fo L[.t,y] o (ty))
= T(f o L[.l".l‘»-f-t(y—.v)} o 99)

* For example, one might show that the difference between the two kernels (where
n = |a]) is uniformly bounded.
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and similarly

T(f © L[x,y] 05 [%’ 1]) ~ T(f o L[a:+t(y—:c),y] o 99)’
SO

1
pe.y) = / P, + t(y — ))plx + Ky — ), y)dt

or, after a change of variable,

(15) plz,y) = 5—1—; /x ’ p(x, t)p(t,y)dt

It might be worth noting that the measurability requirement on T is used only
to ensure that p is well defined and measurable on [0, 1]2. Thus weaker properties
might also do.

First, a technical lemma.

LeMMA 12: If h(z) is a bounded function satisfying, for every x < yg,

h(z) < ! /yo h(s)ds,

Yo—T

then for every z < t < yo,

1 Yo
h(z) < o = t/c h(s)ds.

Proof: 1f not, define

sp :=sup{s: s <t, h(s) > h(z)}

and let s,, — s be a series satisfying h(s,) > h(z) (not necessarily different from
50). We have, for n sufficiently large,

1 o

hx) < hs,) < h(s)ds

Yo — Sn Jg,

h(:r)_Jo—tﬂ-?o*Sn(/ /y0> (s)ds

and, taking n — oo, the lemma is proved.

50



Vol. 139, 2004 RANDOM HOMEOMORPHISMS AND FOURIER EXPANSIONS 207

LEMMA 13: A measurable function 0 < p(z,y) < 1 satisfying (15) is decreasing
in y almost everywhere.

Proof: For x < y < z, denote

A(z,y, ) = p(z, 2) — p(=, y),

A(x,y) := esssup A(z, y, 2),
z2y

and define
p:=esssup Az, y)

and assume to the contrary that p > 0. A satisfies the following:

: (/:p(x,t)A(t,y,z)dH/yz pla, t)p(t, z) — p(a, y)dt>

A(z,y,2) = . _r

< . _1_ - </:p(m,t)A(t,y)dt + /yz A(x,y,t)dt).

We now iterate this inequality. The second iteration looks like

A,y ) <— ( /yp( At )t

t—x / +$)A(s, y)ds+/ A(x,y,s)ds>dt>
Z;(/yp )( 73_r>dt
AEVESDD
— ([ ooata(tem (=) )
+/y Az, y,t )m(;—i)‘@

and, similarly, the nth iterate looks like
1 2 n-1
Y, 2) < —
Az, y, )_z—x<L (x,t)A tyzk'ln (y—x)d
1 ‘ n—1
+—(n~1)!/y A(z,y,t)In (t——l)dt)

and, when 7 tends to infinity, the second term vanishes (JA| < 1) and we are left

with
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which is true for all z. So
1 v
(16) Az, y) < yT.z/ plz, ) A(t, y)dt.

Next, fix some small € > 0 and get from Lebesgue's density theorem the existence
of a square [xq, g+ 4] X [yo, Yo + 6] where A > yi — € on a set of measure > 0.96%;
and we may also assume that x¢ + 0 < yo and that A{wg,yo + ) > pp— €. Our
contradiction will follow by examining the triangle

T:={(t,y):y0 <t <y<yo+d}

Now, on one hand, we have a set Y C [yo, yo + 8]. mY" > 0.94 of y’s such that for
each y € ¥ there exists an x € [xg, 2o+ 0] satisfying A(x, y) > 1 —e and therefore
using lemma 12 for h(x) := max{0, A(x,y)} (ignoring, for the moment, the p in
inequality (16)) gives

y
/ max{0, A(t,y)}dt > u—¢ Vyel.

Y—Yo Yo

This inequality for the average gives a simple measure estimate (assume € < 0.1p)
(17) m{t: yo <t <y, At,y) > p—10e} >09(y—y) YyeY

and on all of T

(18) m{(t,y) € T: A(t,y) > p— 10e} > 0.7m7T.
On the other hand, returning to (16) and inspecting p we get that A(t,y) > p—10e
implies
1 v 10e
— plt,s)ds >1— —
y—tJ (6.s) K
and, as before,
100
(19) m{s: t<s<uy, p(t,s)>1- ;—16} > 0.9y —1t)
but yo + € Y, which can be combined with (17) and (19) to get
100
(20) m{(t,s) €T:plt,s) > 1~ Tf} > 0.7mT.

Finally, we return to the definition of A and note that p(x,y) > 1 — ¢ implies
A(z,y) < ¢, so we can combine (18) and (20) to conclude that for some (x,y) € T,

= 10e < A(x,y) < 100¢/p,

and since ¢ was arbitrary, the lemma is proved. |
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Remark: The function

ol ) = d O Y= %
p(r.y) = { 1, otherwise

satisfies (15) but is not monotone everywhere. Thus the “almost everywhere” in
lemma 13 is not an artifact of the proof but a property of (15).

LeEMMA 14: A measurable function 0 < p(a,y) < 1 satisfying (15) is increasing
in x almost everywhere.
Proof: Use Lemma 13 for p/(2,y) :==p(1 —y,1— 2). ]

We wish to avoid the complexities arising from the fact that p is monotone
ouly almost everywhere. Luckily, all further operations will be pickings of certain
values out of sets of positive measure. Thus, we can ignore the non-monotone
triplets by simply redefining the notion of picking. Let us call a triplet » < y < =
good when p(x,y) < p(x,z) and ply, z) < p(x,z); and a triplet », y, = is good
when it is good in the right order.

Definition 2: We say that we pick an x if & satisfies:
(i) For almost all x5 and z3, the triplet x, x2, x5 is good.
(i) If 22 has already been picked, then for almost all a3, the triplet 29,2, 23 is
good.
(iii) If 2 and x5 have already been picked, then the triplet x9, 23, 2 is good.

An induction on Lemmas 13 and 14 ensures that we can always pick out of
every set of positive measure.

LEMMA 15: For almost every x < y < z, p(x, z) = p(x, y)p(y, 2).
Proof: Define

(21) Alr,y.z) = |p(x, 2) — p(x,y)p(y. =)

and assume to the contrary that

(22) p=esssup A(x,y.z) > 0.

Again, let € > 0 be arbitrary, and let

[20 — %5. 9+ %5] X [yo — %5, Yo + %(5] X {20 — %5, z0 + %5]
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be a cube where A > p — € on a set of measure > 0.996%; and also assume
xo + 9 < Yo, Yo + 6 < zo and A(xg, yo, z0) > it — €. As before, we need a method
to “push” z and z toward y. We start from the simple

1

(33) Ay < —

(Lyp(x,t)A(t,y,z)dt+fyz A(.’L',y,t)p(t,g)dt)

from which we can deduce

SUBLEMMA: Assume A(zy,Y1,21) > p—e with |21 —y1| > 2v and |21 —y1| > 2v.
Then there exist xo and 29 such that

(i) To <1 < 295

(ll) A(.I'Q,yl, 22) > u— 4e

(iil) yy — z2 < 2v;

(lV) 29— < 2v;

(v) eitherv <y, —xq orv < z3 — 3.
Furthermore, if xy, y1 and z, are picked in the sense of Definition 2 above then
x9 and zo are also picked.

Proof of sublemma: Denoting

Ry:={(z,y,z21): € (1, 1)}, Ra:={(x1,41,2): 2 € (y1,21)}
and using (23) we get

esssup  A(z,y,2) > p—e.
(z,y,2)€ER1UR;

Let us assume that esssupp, > p—¢. The proof of the other case will be identical.
We denote

M(z) := esssup A(z,y1,2)
zE[thl]

(so that M(x1) > p — €) and, using (23) again, we have

Az, y1,2) < . (/g M(t)dt+/21\4(z)dt),

foT n

50

M(x) < 1 /y1 M(t)dt

T -
and we can use lemma 12 for M to obtain
1 Yt

5 M@)dt > p—e.

Y1 —2v
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We get a set Xy C (y1 — 2v,y1 — v) of positive measure with @ € X, satisfying
M (x) > p — 2¢, which implies a set of positive measure X5 C (y1 — 2v, 91 — V) X
{y1,21) with (2, z) € X, satisfying (x,y1,2) > 1 — 2¢. Let us pick a z3 such that
X3 = {x: (x,z3) € X2} has a positive measure. If z3 < y1 + 2v, the lemma is
proved — we denote 29 := z3, pick an x5 out of X3 and finish. Otherwise, we
define

My(z) :== esssup A(x,y1,2)
z€{y1 —2v,y1}

and again use Lemma 12, this time for Ms, to get

y1+2v
/ My(t)dt > 11— 2e.
Y1

We complete the proof by picking 22 € (y1 + v, y1 + 2v) with Ma(z3) > p — 4e
and then picking an x5 € (y; — 2v,y1) satisfying A(xqg, y1,20) > pt — 4de. |

Let us now complete the proof of Lemma 15. First we use the sublemma for
Zo, Yo. 20 and v = +4. Denote the resulting values by x; and z;. Let us assume
that yo — x1 > 10 — it will be easy to verify that the same proof works in the
second case. We return to (23) and observe that A(xy,yg,21) > ¢ — 4¢ implies

1 yo “ 4e
(f plzy, t)dt —+—/ p(t,zl)dt> >1-—,
1T 1 Yo K

and thus we can pick a t; € [+ 4+ Tyo. o) satisfying p(x;, ;) > 1 — 32¢/p.
Denote now I := (0.6 + 0.4¢1, 0.4x; + 0.61;). Since

1I| = 0.2(t; — 21) > 0.1(yo — #1) > 0.0256
and since I C [yo — 6,90 + $4], we can pick y; € I such that
m{(z, z) € [xo,x0 + 8] X [20, 20 + 8]: Az, y1,2) > p— €} > 0.
This allows us to proceed and pick x5 and 25 satisfying
A(xo,y1,22) > p— ¢

We use the sublemma again, for x3, y;, 29 and v = 0.056. Denoting the output
of the claim by x3 and z3 we are finally faced with the following situation:

T <r3 <y <z3<t;<yo <z,

plx1,t1) > 1 — 32¢/p,

A(x3,y1,23) > p— 4e.
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This, however, is a contradiction to the assumption g > 0 since the monotonicity

of p gives
p('/rSv yl)w P(Z/lﬁ ’:3) >1- 326/“»
SO
A2z, y1,23) <1 - (1—32¢/p)? < 64e/p
and, since € was arbitrary, g must be zero. 1

The fact that p(a,y) is multiplicative only almost everywhere requires us to
use a variation on the standard 0-1 law. The formulation follows:

LeMMA 16: Let Q = [[Q, be a (product) probability space and X a random
variable defined on Q such that for almost every wy,w} € Qq....,wy, w), € Oy,

E(X | wie.ywn) = B(X

Wieeoo wh).

Then X is similar to a constant. In particular, if X = 14, then P(A) = 0 or
P(4) =1.

The proof is identical to the proof of the standard 0-1 law — see, e.g.,
(K85, page 7].

Proof of Theorem 3: We want to use Lemuma 16 with the independent variables
X, k- Clearly, we may assume that the number of variables in the lemma is
2NV — 1. Now, taking E(- | {Xnx = wni}) forn=1,....Nand 1 < k < 2" is
identical to taking

B(| {p(k27N) = s }2y)

(write so = 0 and sy~ = 1) and then
N
E(T(f 0 0.1]) | {p(k2™™) = s,}220)
2N _1
_]E( Il T(fo@stk2™, (k+ 127V | {p(k2™N) = s 1o 0)
k=0
= HE(T o k27N, (k+ 127D | {e(127Y) = sihizkhar)

_HE OL@L Sk+x]o"p))

= Hp Sk, Sk+1) = p(0,1) for a.e. {si}
k

and the theorem is proved. ]
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Theorem 3 can be applied to a number of harmonic properties of f o . Let us

name a few, without proofs:

Uniform convergence of S,(f o ¢) = f o . One possible corresponding
interval property is
T(f:I)=1<VJCI, lim / D, (x —1t) - (f(p(t)) = flp(x)))dt =0
J

n—o0

uniformly in x. Showing that this is probabilistically equivalent to f € U(T)
is similar to the proof that [’y is equivalent to U.

o Pointwise divergence on an infinite/uncountable/dense/second category set.

All these properties (or their complements) are interval properties to begin
with, so Theorem 3 applies directly.
Pointwise convergence everywhere.
Pointwise bounded Fourier partial sums.
For any v'(n) / oo,
Sn(f o) = o(y(n))

uniformly or pointwise everywhere.
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